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Abstract

Let X be a Banach Space, we consider the relationship between the
weakly convergent sequence coefficient WCS(X) and some well known

moduli and parameters, and get some sufficient conditions for normal
structure in this paper, which generalized Gao’s some results, moreover
some of which also imply the existence of fixed point for multivalued

nonexpansive mappings.

1. Introduction

We shall assume throughout this paper that X and X* stand for
Banach space and its dual space, respectively. By Sy and By we denote

the unit sphere and unit ball of Banach space X, respectively. The
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number r(D) = inf{sup{|x — y|: y € D} : x € D} is called Chebyshev
radius of D. The number diam D = supf{|x —y||: x,y e D} is called

diameter of D. A Banach space X has normal structure provided
r(D) < diamD for every bounded closed convex subset D of X with

diam D > 0. When the above inequality holds for every weakly compact

convex subset D of X, X is said to have weak normal structure. A Banach
space X is said to have uniform normal structure if there exists 0 < ¢ < 1

such that r(D) < ¢ - diamD for any closed bounded convex subset D of X
that contains more than one point.

It is well known that weak normal structure and normal structure
play an important role in metric fixed point theory for nonexpansive
mappings. Since it was proved that Banach spaces with weak normal
structure have the weak fixed point property for nonexpansive mappings

in [13], many geometrical properties of Banach spaces implying weak

normal structure or normal structure have been studied.

The weakly convergent sequence coefficient WCS(X) (see [1]) of X is
defined as follows: WCS(X) = inf{lim, ., |x, — x|}, where the infimum
is taken over all weakly null sequences {x,} in X such that
lim, | %, =1 and 1im, ;e peml%n — %, exists. It is known that

WCS(X) > 1implies X has weak uniform normal structure (see [1]).

The modulus of convexity of X [3] is a function §x(¢) : [0,2] — [0,1]
defined by

Sx(e) = inf{l —w cx,ye Sy, |lx-y= s}.

The function dx(e) strictly increasing on [go(X), 2], here
£,(X) = supfe : §x(¢) = 0} 1is the characteristic of convexity of X, and the

space is called uniform nonsquare if ¢,(X) < 2 (see [12]).

The WORTH-property was introduced by Sims in [19] as following. A
Banach space X has the WORTH-property if

Tim [, + ] - e, ] = 0
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for all x € X and all weakly null sequences (x,). In [20] the author

defined the coefficient of weak orthogonality, which measures the degree
of WORTH-whileness by

o lim inf
o(X) = sup{?» : khrrln_)lor.}f"xn + x| < P (E x||},

where the supremum is taken over all x € X and all weakly null

sequences (x,, ). Furthermore the lim inf can be replaced by lim sup. It is
proved that % < o(X) <1, and a Banach space has WORTH-property if

and only if o(X) = 1.

The following result regarding the relationship between normal

structure and the modulus of convexity of X and o(X) was proved in [6].

Theorem 1. For a Banach space X, if §x(1 + o(X)) > 1 - o(X), then

X has normal structure. Furthermore for a superreflexive Banach space X,
if 3x(1+ (X)) >1-o(X), then X has uniform normal structure.

The modulus of smoothness [16] of X is the function px(¢) defined by

px(t) = sup{"x + ] JZF [ - -1l:x,ye€ SX}.

The following result regarding the relationship between normal

structure and the modulus of smoothness of X and o(X)was proved in

[6]:

Theorem 2. For a Banach space X, if px(t) < 303(X2)t -1 and
to(X) < 1, then X has normal structure. Furthermore for a superreflexive

and to(X) < 1, then X has uniform

Banach space X, if px(t) < %

normal structure.

Milman’s modulus B (¢) [18] is defined by

Bx(t) = suplmin{lx + iyl Jx ~ ]} -1 : x, y € Sy,
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For any ¢ > 0, we put
J(t, X) =Bx(t)+1.

The James constant J(X) is the case of ¢t = 1. Gao proved the following

result.

Theorem 3. For a Banach space X, if J(X) < 20(X), then X has

normal structure. Furthermore for a superreflexive Banach space X, if
J(X) < 20(X), then X has uniform normal structure (see [6]).

The parameter  E(t, X) = sup{|x + ty||2 +x - ty||2 cx, y e Sy},
(0<t<1) was introduced by Gao in [7]. He proved that if

E(t,X) < 21 + t)?,then X is uniform non-square. The constant E(X) in

[8] is the case of ¢t =1. The von Neumanu-Jordan constant was
introduced by Clarkson in [2]. An equivalent definition of the NdJ constant
1s found in [12] , that is

I + 9l + =~ oI
2 2
2(=[* + 1)

Cnys(X) = sup{ xeSx,ye BX}.

It is well known that

Theorem 4. For a Banach space X, if E(X) <1+ 20(X) + 5(e(X))?,
then X has normal structure. Furthermore for a superreflerive Banach
space X, if E(X)<1+20(X)+5w(X))?, then X has uniform normal
structure (see [6]).

In this paper, we discuss the relationships between WCS(X) and
J(@, X), o(X), E(t, X) and get some sufficient conditions for normal

structure, which improved the Gao’s result in [6]. Moreover we show that
these conditions imply the existence of fixed point for multivalued

nonexpansive mappings.

2. The Relationship Between WCS(X) and J(¢, X), o(X), E(t, X)

Lemma 5 [17, Lemma 9]. Let X be a Banach space. If (x,) is a
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weakly null sequence in Sx such that 1im, , . pemlXn, — %,| = d

exists, then there exist weakly null sequences (u, ) and (o, ) in Sx, (f,)

and (g, ) in Sy« for which

. . 1
lim fn(_ un) = r}glgogn(un) = Eaand

n—»o
. . . 1
>
min{ I}E}C}o fn(wy), 7}3130 gn(wp)t 2 an(X)’

where W(X) is the infimum of the set real numbers r > 0 such that

lim sup|x + x,,| < r lim sup|x — x,,|
n n

for all x € X and all weakly null sequences (x,) in X (see [11]).

. 1
0b l X)=——.
viously o(X) LX)

Theorem 6. Let X be a Banach space. Then the inequality

21 + to(X))?

WCS(X)? > sup{ B, X)

:0<t < 1} holds.

Proof. Let (x,) be a weakly null sequence in Sy such that

LMy, oo, nemlln — %) = d exists.

By the Lemma 5, there exist weakly null sequences («,,) and (w,,) in

Sx, (f,) and (g,) in Sx* for which
. . 1

lim f,(-u,) = lim g,(u,) == ,and
n—o0 n—>o0 d

min{ lim f,(w,), lim g,(w,)} > oX)
n—w n—w d

Let 0 <t <1. Since |u, +tw,| = g,(u,)+tg,(w,) and |u, —tw,|

> f,(~u,) + tf,(w,) for each n e N, we have the following inequality

min{ lim inf|u, + tw,|, lim inf|u, —tw,|} = L 1+ to(X)).
n—oo n—o d
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Hence the inequality
2 2
E(t’X) = "un + twn" + ”un - twn"
for each n > 1,that is,
2
E(t, X) > M
d2
or equivalently

2(1 + to(X))?
d? > O

By the definition of WCS(X), we conclude

2(1 + to(X))?

WCS(X)? > sup{ B, X)

:0<t£1}.

Corollary 7. Let X be Banach space. If there exist 0 < t < 1such that
E(t, X) < 201 + to(X))?,
then X has normal structure.

Proof. It is easy to know that the inequality E(t, X) < 2(1 +t)?

implies the space X is uniform nonsquare, then X is superreflexive. It is
sufficient to prove that WCS(X) > 1. By the hypothesis there exists

0 < ¢ <1 such that E(t, X) < 2(1 + to(X))?, Then we have

2(1 + to(X))?

WCS(X)? > sup{ B, X)

:0<t£1}>1.

Thanks to Theorem 6.

Remark 8. In fact for a superreflexive Banach space X ,1f Xis a
ultrapower of X, then E(X) = E(X) and o(X) = o(X) ([6]), in particular
E(X) < 2(1+ o(X))?, then X has normal structure by Corollary 7,

consequently X has uniform normal structure and

21 + (X)) -1 - 20(X) - 5(0(X))? = (1 — o(X)) (3e(X) +1).
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It is well known that <w(X)<1, so we have (1- (X))

(S

(Bo(X)+1) >0 whenever o(X) <1, which is strict generalization of

Theorem 4.

Theorem 9. Let X be a Banach space. We have the following
inequality

1+ )% + o(X)?)
E(t, X*)

WCS(X)? > sup{ :0<t< 1} holds.

Proof. Let (x,) be a weakly null sequence in Sy such that

Bmy, 1o nemll%n — X = dexists.

By the Lemma 5, there exist weakly null sequences (u,) and (w,,) in
Sx and (f,)) and (g,,) in Sy, for which

lim f,(-u,) = lim g,(u,) = % and
n—oo n—o

min{ lim £, (w,), lim g,(w,)} > 24X
n—o0 n—oo d
Let 0<t<1. Then |f, —tg,| 2 fu(-u,)+1tg,(u,) and |f, +tg,]|

> f,(w,)+tg,(w,), foreach n > 1. So we have

o 1+1¢
hrlln_};lf”fn - tgn” z d

and

lim inf|f, + g, | = LED X,
n—oo d

Since

E(t’X*) 2 ”fn + tgn"2 + "fn - tgn"2’
we obtain the following inequality

@ +0)%(1 + o(X)?

72 ) holds

Et,X")>
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or equivalently

g2 s WP+ o(X))
- EtX*)

Hence, WCS(X)? > sup{(1 +*(1+ 0lX)°) :0<t < 1}.

E(t, X")

Corollary 10. Let X be a Banach space. If there exist 0 <t < 1such
that

Et,X*) < (1 +t2(1+o(X)?),

then X has normal structure. In particular if E(X*) < 4(1 + o(X)?), then

X has normal structure.

Proof. First we have E(t,X")<21+¢)® thanks to o(X)<1,

therefore X" is uniform nonsquare, then X is uniform nonsquare, so X is
reflexive. It is sufficient to prove that WCS(X) > 1.

By the hypothesis there exists 0 <¢ <1 such that E(¢, X*)

< 1+t + o(X)?), by Theorem 9,

1+ 621+ o(X)?
E(t,X")

WCS(X)? 2sup{ ) :O<ts1}>1.

Corollary 11. Let X be a Banach space. If Cny(X) <1+ o(X)? then
X has normal structure (see [11]).

Proof. We get that X is reflexive by Cpy(X) <1+ o(X)? <2. We
have known that o(X) = o(X") in reflexive Banach space (see [11]) and
Cny(X) = Cny(X") in any Banach space. Therefore the hypothesis
Crny(X) <1+ o(X)? is equivalent to Cny(X*) <1+ o(X)?. We know

that E(X") < 4Cny(X"), then X has normal structure by Corollary 10.
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Theorem 12. Let X be Banach space. Then

WCS(X) > sup{lc}r(tt,—mg? it > 0},

Proof. Let (x,) be a weak null sequence in Sy such that

Bimy, p o neml%n — %m| = d exists. Let ¢t >0. Then repeating the

arguments in the proof of Theorem 6, we find two sequences (u,) and

(w,) in By, such that

min{lim inf |u,, + tw,], liminflu, - tw,]} > L @1 + to(X)),
N—>00 n—w d

by the definition of J(¢, X), we obtain
J,X) > %(1 + to(X)),

that is

1+ to(X)
S o

We get the conclusion by the definition of WCS(X).
Corollary 13. Let X is a Banach space. If there exists t > 0 such that
J(t, X) <1+ to(X),

then X has normal structure. In particular if 0<t<1 and
J(@, X) <1+to(X), then X has uniform normal structure. (Note that
J(t, X) = J(t, X ) whenever 0 < t <1).

Remark 14. (1) We have known that if J(X) < 1+ o(X), then X has

normal structure (see [11]), actually we can prove X has uniform normal

structure by ultrapower as Remark 8, and
1+ 0X)-20(X)=1-0(X) > 0,

whenever o(X) < 1, which is strict generalization of Theorem 3.
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(2) Obciously J(¢, X) <1+ px(t) from the definition, we have if there
exists 0 <t <1, px(t) < to(X), then X has uniform normal structure by

Bo(X)k -1  1-to(X)
2 - 2
In fact there exist Banach space X such that to(X) < 1, such as the Bynum

Corollary 13. And to(X) - > 0, when to(X) < 1.
. V2
space Iy 1 it is known that w(ly ;) = - (see [11]). We have to(X) < 1,

when ¢ < ¥2. So Corollary 13 is strict generalization of Theorem 2.

3. Some Geometric Conditions Which Imply the Fixed Point
for Multivalued Nonexpansive Mappings

First we are going to recall some concepts and results which will be
used in the this section. Let X be a Banach space and C be a nonempty
subset of X. We shall denote by CB(X) the family of all nonempty closed

bounded subsets of X and by KC(X) the family of all nonempty compact
convex subsets of X. A multivalued mapping 7T : C — CB(X) is said to

be nonexpansive if

H(Tx,Ty) < |x - |, x,y € C,
where H(-,-) denotes the Hausdorff metric on CB(X) defined by
H(A, B) := max {sup inf|x — y|, supinf |x — y|}, A, B e CB(X).
xeA, yeB yeB,xeA
Let {x,} be a bounded sequence in X. The asymptotic radius

r(C,{x,}) and the asymptotic center A(C,{x,}) of {x,} in C are defined
by

r(C,{x,}) = inf{lim sup|lx, — x| : x C}
n
and

A(C,{x,}) = {x eC: limnsup"xn - x| =r(C, {xn})},

respectively. It is known that A(C,{x,}) is a nonempty weakly compact

convex set whenever C is.
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The sequence {x,} is called regular with respect to C if
r(C,{x,})=r(C,{x,,}) for all subsegences {x,, } of {x,}, and {x,} is called
asymptotically uniform with respect to C if A(C, {x,}) = A(C, {x, }) for

all subsequences {x,, } of {x, |.

Lemma 15.

(1) (Goebel [9], Lim [15]) There always exists a subsequence of {x,,}

which is regular with respect to C.

(1) (Kirk [14]) If C is separable, then {x,} contains a subsequence

which is asymptotically uniform with respect to C.
If D is a bounded subset of X, the Chebyshev radius of D relative to C
is defined
rc(D) = inf sup|x — y||
xeC yeD

In 2006 Dhompongsa et al. [4] introduced the Dominguez-Lorenzo
condition in the following way. A Banach space X is said to satisfy the
Dominguez-Lorenzo condition ((DL)-condition, in short) if there exists
A €[0,1) such that for every weakly compact convex subset C of X and

for every bounded sequence {x, } in C which is regular with respect to C,

rc(A(C, {x, 1)) < Ar(C, {x, }).

The (DL)-condition implies weak normal structure (see[4]). The (DL)-
condition also implies the existence of fixed points for multivalued

nonexpansive mappings.

Theorem 16 (See [5, Theorem 1]). Let C be a nonempty weakly
compact convex subset of a Banach space X which satisfies the (DL)-

condition. Let T : C — KC(C) be a nonexpansive mapping, then T has a
fixed point.

Theorem 17. Let C be weakly compact convex subset of a Banach
space X and let {x, } be a bounded sequence in C regular with respect to

C. Then for every t € (0, 1],
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. ) < NVEGX) o0
c(A(C, {x,})) < 20+ 1o(X)) (C, {xn})
Proof. Denote r = r(C, {x,}) and A = A(C, {x,,}). We can assume

r > 0. By passing to a subsequencee if necessary, we can also assume

that {x,} is weakly convergent to a point x € C. Since {x,} is regular

with respect to C, passing through a subsequence does not have any effect

to the asymptotic radius of the whole sequence {x,, }.

Let z e A, then limsup,|x, — 2| =r. Denote ® = o(X). By the

definition of o we have

o lim sup|x, — 2x + z|| = o lim sup|| (x,, — x) + (z — x) |
n
< lim sup|| (x,, —x)—(z—x)|| = .
n

Convexity of C implies that 20 X+ 1 _tmz e C and thus we
1+io 1+to

obtain

lim sup

n 1+t 1+t

(Ztco 1-tw ]H
X, — X+ z |l > r.

On the other hand, by the weak lower semicontinuity of the norm, we

have

lim inf(1 - t0) (x, %) = (1 + t0) (2 — )| > (1 + o)}z - x]|

For every ¢ > 0 there exists N € N such that

Q) ey — 2| <7 +e.

@) [xn - 2x + 4] < %(r+8).

(2tm 1-to )
XN — x + z

>r—ce.
1+to 1+to

3)

@) [0~ 10) (=)= (14 10) (2 = x)| = (L + to) |2 - ] (72,

r
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Note that u =

1 (xy —2)e By and v (xy —2x +2)

-_©
r+e (r+e¢)

€ Bx. Using the above estimates we obtain

Xy —x  z-x  tolxy —x) | tolz-x)

t =
e+ o] r+e r+e (r+e¢) (r+e¢)
1 to 1 170)
—Mm+mj<x1v‘x)‘(m‘m)(z‘x)
1 1-to
- Q1 Cx— _
r+s(+tm)xN X 1+t0)(z x)“
1 2tm 1-to
_r+8(1+tw) xN_(1+t(ox+1+t(oz)H
r-g
> 1+t
(+(D)r+
and
I — to] = Xy —x z-x tolxy —x) to(z-x)
r+e r+e r+e r+e
1
:r+8||(1—tu))(xn—x)—(1+t(n)(z—x)||
> (1+ tm)—”’Z —*lr-e
- r r+eg’
Thus

E(t, X) = |u+ tv|* +|u - to]?

> (1+ tw)2[r = 8)2 1+ tm)%@f(ﬂ)z

r+e r+e

r+e

> 21 + tm)z(ujz(r - 8)2.
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Since the last inequality is true for every ¢ > 0 and every z € A, we

obtain

re(A(C, {2, ) < @—% HC, {2, ).

Corollary 18. Let C be a nonempty bounded closed convex subset of a
Banach space X such that E(t, X) < 2(1 + to(X))? for some t € (0,1] and
T : C - KC(C) be a nonexpansive mapping. Then T has a fixed point.

Proof. When E(, X) < 2(1 + to(X))* for some ¢ e (0, 1], then X

satisfy the (DL)-condition by Theorem 17. So T has a fixed point by
Theorem 16.

Theorem 19. Let C be a weakly compact convex subset of a Banach

space X and let {x,} be a bounded sequence in C regular with respect to

C. Then for every t € (0,1],

re(A(C ) = T E S C )

Proof. Denote r = r(C, {x,}) and A = A(C, {x,}). We can assume
r > 0. By passing to a subsequence if necessary, we can also assume that
{x,} is weakly convergent to a point x € C. Since {x,} is regular with

respect to C, passing through a subsequence does not have any effect to

the asymptotic radius of the whole sequence {x,, }.

Repeating the arguments in the proof of Theorem 17, we consider

! (xy —2) e By and v = —>

- 2x + Bx. We obtai
- r+a(xN x + z) € Bx. We obtain

u =

min{[u + o], u - to]} = min{a F10) 7 (14 1) B - 1 - i}

el
r r+e¢
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Thus

Iz = x| r —¢

Jit,X) = (1 +to) —

The last inequality is true for every £ > 0. So we obtain the desired

inequality.

Corollary 20. Let C be a nonempty bounded closed convex subset of a
Banach space X such that J(t,X) <1+ to(X) for some t € (0,1] and T :

C — KC(C) be a nonexpansive mapping. Then T has a fixed point.

Theorem 21 Let C be a weakly compact convex subset of a Banach

space X and {x,} be a bounded sequence in C regular with respect to C.

Then

ro(A(C, by ) = 2= 2XE Lo 16 g

Proof. Denote r = r(C,{x,}) and A = A(C,{x,}). We can assume

r > 0. By passing to a subsequence if necessary, we can also assume that

{x,} is weakly convergent to a point x € C. Since {x, } is regular with

respect to C, passing through a subsequence does not have any effect to

the asymptotic radius of the whole sequence {x,, }.

Repeating the arguments in the proof of Theorem 17, for ¢ = 1 we

consider
:r}rg(xN_z)EBX and v = ri)g(xN—2x+z)eBX. We obtain
r—g
> (1
s ol = (14 0) =2,
and
A s

_ [
[l U||2(1+0))Tr+8'
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From definition of §x(¢), and ¢ is arbitrary we have

1+ o(X))(|z - «) ,

Sx (v o) <1- )

<1-

Ju— ol
2

or eqrivalently

ro(A(C. b ) = 22X Lo e, g,

Corollary 22. Let C be a nonempty bounded closed convex subset of a

Banach space X, if 5x(1 + o(X)) > %(1 -~ o(X)) and T : C — KC(C) be a

nonexpansive mapping. Then T has a fixed point.
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